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RESEARCH REPORT
cn

STUDIES OF FROST ACTION IN SOITS AS A FUNCTION OF SELECTED SOIL PROP-
ERTIES, CLIMATIC FACTORS, AND E_EVATION COF GROUND WATER TABLE

1, INTRODUCTION

When air temperatures fall below freezing for a significant period
moist soils freeze with the result that ice crystals are developed and ad-
ditional moisture, if available, is attracted from lower elevations. The
mechanism of moisture transfer is exceedingly complex, However, it is well
known that where a source of moisture is available ice ssgregation in the
freezing zone of certain types of soil produces a volumetric change, or
"heave", in excess of the dimensional change which can be attributed to the
expansion of water on freezing. Furthermore, the increased moisture con-
tent of the soil caused by ice segregation results in a loss of bearing
strength when thaw of the upper boundary occurs and lower frozen levels
prevent drainage of the excess moisture, To diminish the detrimental ef-
fects of frost action beneath highways it is common practice to use non-
frost-susceptible materials beneath the pavement and also to install sub~
grade drainage where needed to intercept water or otherwise control the
elevetion of the ground water table,

Ideally, the total tiickness of nen-frost-susceptible materials -
pavement, base, and subbase - should be at least equal to the maximum
depth of frost penetration, Vith less than this ideal thickness some
amount of frost action will occur in the upper part of a subgrade of
frost—susceptible material unless there is no transfer of moisture to the
-freezing zone, In some soils a source of moisture will not exist within
certain critical 1imits.(l) In other soils it may be possible to lower a
ground water table sufficiently by means of underdrains to avoid, or limit,
frost action in the subgrade. The fact that thermal gradients and durs-
tion of freezing temperatures in the lower part of the frost zone are gen-
erally smaller than at higher levels is also favorable in terms of re-
duced frost action in the subgrade.,

For some subgrade soils with high capillarity it is not practical

(1) The Corps of Engineers (1) states thet a water supply within 5 feet
of the frost zone in frost-susceptible materials may be troublesome,
Also, when the depth to the water table is in excess of 1& feet, a
source of water for substantial ice segregation is usually not pre-
sent,
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to prevent moisture transfer by loviering the ground water table, Thus,
in some soils, moisture can enter the frost zone through capillarity
from a remote water table, In order to study quantitatively and qual-~
itatively some of the controlling factors (including soil properties,
climatic conditions, elevation of water table) involved in frost action
in frost-susceptible subgrade soils, a series of field tests and analyt-
ical studies were carried out at the University of Connecticut over a
period of several years.(z) Some principal features and results of these
investigations are described in the following.

24 GENERAL DESCRIPTICN OF FIELD TESTS

The field tests were conducted on two frost~susceptible soils -
8ilt from Glastonbury, Connecticut and glacial till from the vicinity of
Storrs, Connecticut ~ (see Figure 1). Special soil test pits were in-
stalled on the campus of the University of Connecticut at Storrs, with
the elevation of the water table for each pit subject to independent con-
trol, Figure 2, Initially 6 pits of 30 inches inside diameter and 6 pits
of 18 inches inside diameter were installed with silt in half of each
size and till in the other half, However, it was found {Figure 3) that
there was a definite size effect in the heave results for the 18 inch _
pits and after one year these pits were abandoned. Therefore, the re-
sults in this report, except for Figure 3, are based on the 30 inch
diameter pits,

The pits were installed on a bench of a gentle slope (about 1 in 6)
facing north, Tﬁe pit area was selected so as to be removed from steam
lines, sewer lines, and similar heat sources., The pit covers were set
initially at approximately the same elevation, For each soil type,
depths to the controlled water table, Figure 2, of 2,5 ft., 4,0 ft., and
5.5 ft, were used, The water table elevations were mezintained by adding
or subtracting water through the 3/4 inch plastic pipe inlets to the re-
servoirs, Figure 2, As a rule dajily adjustments in the water levels were

required during the frost season.

(2) Some aspects of the investigations were described in the Master's
theses of Leonard (2) and Cuomo (3).
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At the start of the tests the soil was compacted in the pits
in layers of approximately 2 inches, with in-place average moisture
and density values as shown in Tables 1 and 2. During the 1952 -
1953 winter, temperature measurements were made in the pits by means
of thermometers lowered through plastic tubes to selected levels,
Prior to the 1953 -~ 1954 winter the soil was removed and electrie
resistance moisture~temperature gages(B) were installed at predeter-
mined levels as the soil was placed and compacted, The soil in the
pits was not disturbed after the start of the 1953 ~ 1954 frost
season until the field studies were discontinued in 1957.

TABLE 1
INITIAL DATA FOR SOILS AND TEST PITS - 1952

™M1 Silt
Pit Number 1l 2 3 I 5 é
Ave, moisture content (%) 8.3 8,8 8.8 17,0 19,6 18.9
Wet weight soil (1bs,) 1446 2354 326, 1200 2046 2852
Dry weight soil (1bs,) 1335 2163 3000 1026 1711 2399
Dry Density (pef) 125 126 124, 100 99 98
Cover bearing pressure(psf) 91 89 88 87 89 92
Diameter of pit (in.) 29.35 29,38 29,25 29,44 29,33 29,34
Depth of soil (£t,) 2,27 3.64 5,18 2,18 3,68, 5,19

Depth to Water Table (ft.) 2¢5 L4dO 5.5 2.5 4O 5.5

TARLE 2
MOISTURE CONTENT AND DENSITY -~ 1953
Til1 Silt
Pit Number 1 2 3 4 5 6

Ave. Moisture content (%) 10,5 11.9 10,5 24,2 24,1 24.8
Dry Density (pef) 119 118 115 97 97 98

Daily frost heave readings were taken by measuring the change
in elevation of the concrete covers with an engineers level, Read-
ings were taken on four rivets embedded in each concrete cover, with

(3) Because of the low order of discrimination of moisture contents
near saturation most moisture content readings were deemed un-
satisfactory,
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an average computed for each pit. A permanent base for the level
and a benchmark were provided in the pit area,

3. SCII PROPERTIES

The silt used in the tests was from Glastonbury, Connecticut
and the glacial till was representative of the soil occurring in the
vicinity of the University of Connecticut in Storrs. Grain size
curves, Figure 1, show that the silt is a fairly uniform soil with
about 80 percent of the grains in the silt range. On the other hand
the till has a much more even gradation with grain sizes ranging
from clay to fine gravel, According to the classic Casagrande (4)
criterion uniform soils are frost susceptible if they contain more
than 10% of grains smaller than 0,02 mm,, and non-uniform soils are
frost susceptible if they contain mcre than 3% of particles smaller
than the 0,02 mm, Therefore, both the silt and till are classified
as frost susceptible since for the silt 46F of the particles were
smaller than the 0,02 mm, size while 22% of the till particles were
smaller than 0,02 mm, The two soils are also seen to be frost—
susceptible from the Corps of Engineers (1) Table 3.(A)

‘TABLE 3
FROST-SUSCEPTIBLE SOIL GROUPS - CORPS OF ENGINEERS (1)

Grou Descriptien
F1 Gravelly soils containing between 3 to 20 percent finer
than 0,02-rm, by weight.
F2  Sands containing between 3 and 15 percent finer than 0,02-mm,
by Weight . .
F3 (2) Gravelly soils conteining mar e than 20 percent finer than

0.02-mm, by weight, (b) Sands, except very fine silty sands,

containing more than 15 percent finer than 0,02-mm, by weight.
(e) Clays with plasticity indexes of more than 12, (d¥ Varved
clays existing with uniferm subgrade conditions, :

Fl (a) A1l silts including sandy silts., (b) Very fine silty
sands containing more than 15 percent finer than 0,0Z2-ym. by
weight, (¢) Clays with plasticity indexes of less than 12,

(d) Varved clays existing with nonuniform subgrade conditions.

() Linell, Hennion, and Lobacz (5) have suggested a modification of
the groupings shown in Table 3.
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Additional soil properties are listed in Table 4, and mois-
ture-tension relationships for the two soils are shown in Figure 4,
Moisture-density relationchips for the till and silt are shown in

Figures 5 and 6, respectively,

TABLE 4
PROPERTIES OF SOILS IN TEST PITS
Storrs Glastonbury

Ti11 S5ilt
Specific Gravity 2.72 275
Iiquid Limit 22 24
Plastic Limit 19 20
Plastic Index 3 b
% finer than 0,02mm 22 46
Proctor Density (pef) 117 164

4o AIR TEMPERATURES - FREEZING INDEX

Since air temperature is a controlling factor in frost ac-
tion it is common practice in frost studies to calculate a freezing |
index, based on average, or mean, daily temperatures, as a measure
of the climatic conditions at a site during the freezing season.(s)
As defined by the Corps of Engineers (5), (6), (7) the freezing in-
dex is a measure of the combined duration and magnitude of below-
freezing air temperatures occurring during any given winter and
~therefore is related to the depth of frost penetration, Numerically,
the index is equal to the 'maximin ordinete of the cumulative degree
days (in °F.) versus time curve (Figure 7). For any one day the
number of degree days is equal to the difference between the average
air temperature and 32°F, The degree days are taken as positive
when the average temperature is below 32°Fa and negative when the
average temperature is above 32°F, The cumulative degree days—time
curve is a plot of the cumulative degree days by days, starting usu-
ally with the first day for which the average temperature is equal
to or below 32°F. The period for which the average daily temperatures
tend to be below freezing and tte cumulative value has a fairly con—

(5)Average daily temperature is the average of the maximum and minimum
temperatures for one day or the average of several temperature
readings taken at equal time intervals during one day. Mean daily
temperature is the average of the average daily temperature for a
given day for several years,




-6 -

tinuous growth from minimum to maximum value is termed "Duration of
Freezing Index", Figure 7, (7).

Cumulative degree day curves for the Storrs test site for the
years 1952-1957 are shown in Figure 8 where the cumulative values
are derived from the separate plots of average daily air temperatures
in Figures 9, 10, 11, 12, 13, From Figure 8 it can be seen that the
general character of the winters during the test period varied consid-
erably with the freezing index ranging from a low of about 220 to a
high of 585 and the Duration of Freezing Index ranging from 60 to 120
days. In comparison with these values for the test period, the Corps
of Engineers (;) has found from a study of long term weather records
that the "mean freezing index"(é) for Storrs is about 325, with a
range for the whole State from a low of 100 degree days (along the
coast) to 500 degree days (in the northwest corner), Similarly the
Corps of Engineers (7) has found the long~term Duration of Freezing
Index for Connecticut to range from about 70 days along the coast to
90 in the narthwestern part of the State with a value of 80 for

Storrs.

TABLE 5

First date for

which average Beginning date

daily temperature when average daily Date of maximum Duration of
was at or belew temperatures tended positive cumula- Freezing

winter 32°F, to be balow 320 tive degree days Index(days)
1952-~53 Nov, 8 Dez, i72 Mar, 12 90
1953~54 Nov, 6 Dec. 15 Feb, 14 60
1954~55 Nov, 10 Dec, 1 Feb, 15 & Mar, 10 100
1955~56 Nov. 19 Decos 1 Apr. 1 120
1056~57 Nov, 10 Dec, 17 Feb, 22 & Mar, 12 85

In addition to the difference in freezing index for the winters of
the test period there were also differences, as shown in Table 5, in
the dates on which the cumulative degree days were a maximum and in the

Duration of Freezing Index,

Further, as shown in Table 5, the date on

(6) Mean freezing index is based on mean temperatures computed for a

period of 10 to 30 years,




-7 -

which frost action in the soil might be assumed to begin to build

up (not start) varied from the first to the 17th of December., There
is a possibility, of course, that some soil freezing takes place
whenever the air temperature first drops bélow-32°F; (at Storrs,
ordinarily in October but sométimes in Sepéember)i However, even
after the air temperature first falls below 32°F there usually will

be many days with minimum dip temperatures above freezing and hence
freezing temperatures do not penetrate Below a thin boundary layer

of the soil. Certainly deep penetration of below freezing temperature
does not ocecuwr until average daily temperatures are fairly eonsistents
ly below freezing. This was borne out at the test site where ground
temperatures (Figures 14, 15, 16) show that freezing at a depth of 6
inches did not occur until two or more weeks after the date when
average air temperatures tended to be at or below 32°F. Over-all,

the period corrésponding to the Duration of Freezing Index (Figure

7), when cumulative degree days arein general increasing, would ap-
pear to be the most significant period for frost actione.

For design for frost the Corps of Engineers (1) utilizes a
"design freezing index" which is the freezing index of the coldest
winter in the latest 10-year period of record or the average of the
three coldest winters in the latest 30 years of record., From a
statistical study by the Corps of Engineers (1), (5) of the relation—
ship between the mean freezing index, camputed for a term of 30 years,
and the design freezing index it arpears that the design freezing in-
dex for Storrs would be about 800 with a range of 500 to 1000 for the

vhole State of Connecticut,
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5. FROST PENETRATION - GENERAL

The depth to which freezing tempsratures penetrate in a soil mass
is a function chiefly of air temperatures and thermal properties of the
goil, Hewever, other factors including surface cover and exposure con-
ditions can also affect frost penetration. From extensive field investi-
gations of frost penetration under airfield pavements, the Corps of En-
gineers (1), (6), (7) found a good correlation between frost penetration
and mean freezing index., These investigations produced an empirical curve,
Figure 17, which was found to apbly satisfactorily to all pavement types
with baseé of non-insulating and non-frosteéusceptible materials, After
further refinements the original curve was presented as a design curve,
Figure 18, for total thickness of pavement and base as a function of the
design freezing index. More recently, Linell, Henion, and lobacz (5) have
published additional curves for frost penetration as a function of the
freezing index and selected soil properties.

Figure 17 as presented by the Corps of Engineers is applicable to
materials with thermal characteristics falling within a marrow range and
does not apply for wet, fine-grained soils for which frost penetration
depthe generally will be less than indicsiive by the curve, (1). There-
fore, in order to obtain frost penetratina depths for conditions which
differ from those assumed it is necessary to utilize analytical methods
in which provision can be made for the conditions which actually exist.

Two of the principal analytical methods(7) used in frost penetration studies

(7) A good description of analytical methods for computing frost penetration
is given by Jumikis ¢g)., Aldrich (9) discusses the Stefan equation and
gives the development of the modified Berggren equation. Additional in-
formation is contained in the references (5) through (13).
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are:

The Stefan Equation: h = / LEknF )
V5
. s L,8knF
The Modified Berggren Equation: h = /\\/—f— (2)
where: h = depth of frost penetration, in feet

k = soil thermal conductivity(e) , in Btu per hour per sq. ft.
per deg, F per ft.

L = latent heat, in Btu per cu, ft. = 1,434 w )’d per hr. 3)
Xd = dry density, 1lb. per cu. ft.
w = water content, per cent
F = freezing index, degree days F.
(9)

n = surface correction factor

A\ = dimensionless correction factor given by Sanger (12), Pigure 21
and Aldrich (9), Figure 5, as a function of two dimensionless

parameters o and a ¢

Vo V.t

Thermal ratio, a = = (%)
Vg F

Fusion parameter, . g Vg = x (5)
L It

‘ o
and Vo = mean annual temperature, deg. F minus 32 F,

V_ = surface freezing ii}dex, deg. F, divided by the duration of freezing
periOd, t. (VS = *t— )

C = volumetric heat, in Btu per cu. ft. per deg. F,
C, +C
= "'g—;—"— the average of the values for the frozen and unfrozen states

0.5w )

w
C =¥q 017+ —) Cp =, (0.17 + 335~ ©)

(8) Often taken as 1/2 (k¢ +k,), the average of the values for the frozen
and unfrozen states, Aldri‘éh (9)

(9) Kersten and Johnson found good agreement between obnerved and calculated
values of frost depth with n = 0.8 in a form cf the Sieflan Equation,
(The St. Paul Equations), Sanger (1L2) refers %o stuwiss waich show that
good results are obtained for n = 0,9 in the Lodified Berggren Equation,
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For a layered system the Stefan Equation has been placed in the fol-
lowing form referred to as the St. Pau]l Eguations by Kersten (11):
St, Paul Fquati F b A
St. Paul Fquationms: = S e

d
F, = -1?2-2:2 By +R, )
2

Lnn
Fn -EZ—(Z Rn-l""gn"‘)

L]

where: F1 = surface freezing index required to freeze layer 1, degree days F
Ll = latent heat, Btu per cu. ft. for layer 1
dy = thickness of layer 1 in ft.

d
Rl = thermal resistance of layer 1 = -l-c—Jf-
1

kl = thermal conductivity of layer 1, in Btu per sg. ft. per deg. F
per ft. per hr,

Aldrich (9) has given the following form of the Modified Berggren

Equation for layered systems:

LEnF
h= A\ (L) ()
k eff.
2 | a Ld,
. (& o e— | L + Loda +
where: (E) effective = hz kl ( Lz 2 seoce Lndn )
dy | Lyd,

iy (7 i et
dy ( }_ZEE ) (9)
n

LIRS & k.

=4
it

estimated depth of frost penetration = dl + d2 + eee dn

C , = weighted value of volumetric heat
._C_ldl + C2d2 + Q.lb...cndn
h

=

(20)
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L, = weighted value of latent heat

_hidy 4 L4y ... L )
h
| Cat F
R W (12)

6. FROST PENETRATION CCMPUTATIONS

A, Soil Temperature Measurements
At the Storrs test site the maximum observed depth of soil freeging

(taken at 32°F) varied from a minimum of 12 inches for the 1952-53 winter
to a maximum of 38 inches for the 1956-57 winter. For the three winters
1953-54, 1954=55, 1955-56 for which ground temperatures are shown in
Figures 14, 15, 16 the average maximum depth of freesing temperature was
26 inches, For these same three winters the average air freezing index was
510 degree days F and the average duration 6f freezing index was 95 days.
B, Frost Penetration Computations
The computed depth of frost penetration in the soil pits for the

three winters, 1953-54, 1954-55, 1955-56, for which the foregoing averages
of observed values are given, can be obtained as follows:

Average Air Freezing Iniex: 510 degree days F

Average Duration of Freeze: 95 days

Mean Annual Air Temperature: 47°F

4 inch concrete cover (9): k = 0.54 Btu/sq. ft./deg.F/ft./nr.
C = 30.0 Btu/cu. ft./deg.F
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Data for the till and silt is as follows:

Till
Dry density,lfh, pef : 118
Moisture Content, w, percent: 16
Thermal conductivity(lo), Btu/sq. ft./deg. F/ft./hr.
Unfrozen soil, ku H 1.17
Frozen soil, kf : 1.25
1/2 (k, +k;) : 1.2
Volumetric heat, C. Btu/cu, ft./deg. F
w
C, = 3rﬁ (0.17 + 555 : 39.0
0,5)
Cp = (0.17 4+ . 29.5
£™ %o 10~ ¢
/2 (g, +C,) : 34.25
Latent heat, L, Btu/cu, ft.
: 2710

Silt

3

27

0.83
1.17
1.0

42.6

29.5

36.05

3760

(10) Values given are estimated from charts prepared by Kersten (1i4). For
both the till and the silt a value of 1.0 Btu/sq, ft./deg. F/ft./hr.
was obtained by test as the average of the values for the unfrozen

and frozen states.

R
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1, Examples of Frost Penetration Computations Using St, Paul Equations
For ered tem:

L inch concrete cover = layer 1

Till or silt = layer 2
IO]. = 0, Rl = 0. 23 = 00611
0.54

From equations (7), if Ll =0, F, = 0

For a surface correction factor of n = 0.8, F2 = 510 x .8 = L0t
Penetration in Till:

2710 dp d2
= +
408 2l E.6ll 1.2 x 2 ]

d2 =2,31 ft. and h = 0,33 +2.,31 = 2.6L ft, from top
of cover to bottom of frost in till

Penetr;tion in Silt:

60 d
408 = 3%—53 E.611+ 2 :]

l.0x 2

d, = 1.75 ft. and h = 0,33 + 1.75 = 2,08 ft. from top of
cover to bottom of frost in silt.

2, Examples of Frost Penetration Computations Using Modified Berggren
Equations for lLayered System:

Penetration in Till.:

To start with, it is necessary to make some estimate of
the frost penetration to use in Equation (9). For Storrs the mean
freeming index, as mentioned earlier in the report, is about 325 and
from Figure 17 the depth of frost in non-frost-susceptible materials
would be about 27 inches or 2.25 ft. In fine grained moist soils the
frost depth would be less and a value of 2.0 ft. can be assumed for

h (dz = 1,67 £t.). From equation (9), ( k) eff. = 2.0° 0.5

1.67
(0 + 2710 x 1.67) + S ( WZ] = 2950
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frem Bquation (20) C = 30 x 0.33 :3-"-'—2—5-1‘-1—'-@7 = 33.6

1.67
2

from Equation (11) L, =2710x = 2260

from Equation (12) u = 22%—’;—-5—9;9- = 0.0799

from Equation (4) a = m'-s'%m =2.8

from Figure 21 in Ref. (12) or Figure 5 in Ref. (39), A = 0.71

48 x .9 x 510

2950
coverto bottom of frost in till,

= 109‘0 fto from top of

from Equation (8) h = 0.71

Penetration in Silt

Assume h = 106 ft. (d = 1,27 fto)

L
(E)eff." (1. [0 5 ( 0 +3760 x 1.27) + 1' = (ﬂw) = 4,660

- 30.x0 + 36,05 x 1.27
th L-L—.JE.T.%_I_L____Z 34.8

1.27

Lm-3760x m = 2980

34.8 x 510
e S A 00%2
. 2980 x 95 4

2,8
A = 0,72

48 x .9 x 510
S ]

13
L]

= 1,57 ft. from top of cover to bottom of frost in silt
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TABIE 6

SUMMARY OF FROST PENETRATION D"PTHS OBTAINED FOR TEST PITS BASED
ON WINTERS OF 1953-~5L4, 1954-55, 1953-56

Method Soil
7411 Silt
Based on measured soil temperatures: 2.16 ft. 2,16 ft.
Computed from St. Paul Equations : n =0.8 2,64 2,08
3 n = 0,6 2.26 1.78
Computed from Modified Berggren Equations: n=0.9 1,94 1.57
n=l,0 2,05 1.65

Corps of Engineers (Fig 17) value for non-frost-susceptible material = 2.25 ft.

Comparison of frost penetration values for the pits, obtained from
average conditions over 3 years Table 6, shows fairly good agreement between
experimental and computed frost depths. Computed values are in each case
larger for the till than for the silt. However, temperature measurements
in the till and silt indicated that the average maximum frost penetration.
depths were about the same in the two soils. In this connection it should
again be noted that the maximum observed frost penetration for one winter

was 38 inches at the test site,
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3. Application to Highways

At the test site the 4 inch coacrete cover rested directly on the
potential subgrade materials and frost penetration computations were
carried out for a two-layered system, However, a highway pavement pro-
file usually consists of several separate layers. For example, the profile
might consist of:

3-1/2 in. bituminous concrete

3 in. penetration macadam

L in, broken stone base

10-1/2 in, sub-base

12 in, selected subgrade material
the subgrade

Using known climatic factors and tabulated or laboratory values of
the thermal characteristics of the several layers, the frost penetration
could be computed. The design depths could then be varied depending on

the ground water conditions, traffic characteristics, and other factors,

7. FROST HEAVE AND MCISTURE MIGRATION

Throughout the period of tecst, records were kept on both the verti-
cal movement of the covers and the amount of water which entered or left
the soil from the controlled level reservoirs(ll) (Figure 2), The daily
changes are plotted as heave and moisture migration for the five winters
1952-1957 in Figures 19-48., Pits 1, 2, 3 contained till with depths to
the water table of 2.5 ft., 4.0 ft, and 5.5 ft. respectively. Pits 4,5,
6 contained silt with depths to the water table of 2.5 ft., 4.0 ft., and

5.5 ft., respectively. Equilibrium was not reached in 1952-53 and 1953-54

(11) Both pits 2 and 5 developed leaks as can be seen from the moisture
migration curves for these pits.
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prior to freezing and the moisture varriations for these two winters do
not depend simply on temperature chaigss, For the other years moisture
equilibrium in the soil generally was reached before freezing eccurred.
Figures 19-48 show that heave and moisture migration are closely
related, with daily fluctuations in one value fairly consistently re-
flecting the daily fluctuations in the others. Further, comparison of the
day to day variations in heave and moisture migration with the vertations
in average daily temperatures, Figures 9-13, shows that heave and moisture
migration consistently reflect changes in average daily temperature with
a time lag of from one to two or three days. Thus, a decrease in average
daily air temperatures on a given day consistently produced a moisture
migration to the soil a day or two later. Conversely, an increase in aver-
age daily air temperature on a given day led to a moisture transfer back
to the water reservoir (Figure 2) a day or two later., Usually both the
cumulative heave and cumulative moisture migration to the soil in a pit
were maximum near the date of maximum cumulative degree days for a winter.
An exception was when cumulative degree days were maximum in late winter.
For a given depth of ground water table the net moisture migration
during the main period of frost action tonded to be larger in the till than
in the silt, On the other hand, tie meximum cumulative heave tended to
be slightly larger in the silt. 1In general, the net moisture migration
increased with an increase of depth to the water table. However, there
was not a clear variation of heave with depth to the water +table, possi-
bly because of the high susceptibility of both soils to frost acticn,
Figure 49 illustrates the influence of the duration and magnitude
of below freezing temperatures, as mezsuced by the air freszing index, on
the average maximum heave of the scil in the pits. The average naximum heave
was computed as the average of the maximum heaves for all six pite in a
given year. The period covered, 1$53-1956, corrssponds to the period dur-

ing which the soil in the pits was not disturbed.
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"In order to develop design depths of non~frost-susceptible
materials and to set the elevation of underdrainage, the max~-
imum depth of frost penetration at a partigular site rust be
krown, Good correlaticn was obtained between measured and
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8, CONCLUSIONS AN) R.COMMENDATIONS

Both the glacial till and siit used in the frost studies
exhibit characteristics of soils highly susceptible to

frost action, Thus both soils heave during periods of
freezing with a migration of moisture upwards which results
in increased moisture contents in upper regions of the soils,
rem2ining even after late winter warming sets in. In prac-
tice the detrimental effects of these characteristics is
found in non-uniform heaving during winter and decreased
bearing strength during the later winter and ezrly spring
when thaw occurs, |

Within the limits studied, the elevation of the ground weter
table has almost no influence on the possible detrimental ef=
fects of frost action in glacial till and silt. Thus, there
was little difference in the heaving of the s0ils for depths
to the ground water table of 2,5, 4, and 5 feet. Probably,
greater depths to the water table — at least within practical
limits -~ would not eliminate the frost effects in the two
soils,

Since both till and silt are highly susceptible to frost ace
tion and, as a practical metter, lowering of the ground water
table does not provide relief from frost action, the scils
should be replaced by non-frost--susceptible materisls when
they occur within the fiost ounztration zone beneath a pave-
ment, '

)

Non—-frost-susceptible materials within the frost penetration

zone should be kept free of moisture, . Therefore, in all v
cases underdrains should be provided to intercept side hill

drainage and in general to lower the elevation of the ground

water table below the frost penetration zone,
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computed values of frost pzictration at the test site from

both the St, Paul Equatinns for layered Systems and the
Modified Berggren Equaliors for Layered Systems, The maxi-
mum frost penetration for des gn purposes should be obtained
through the use of long range weather records for a particular
site., Actual measurements of frost penetration for one year

or even & few years are useful to provide a check on analytical
methods,

There is a considerable variation in climatic factors through
the State of Ccnnscticut. Therefore, in order to apply analyt-
ical methods to the determination eof design frost penetration
depths for different areas of the state, required information
must be developed from existing weather records, In some areas
of the state, it may be necessary for the Highway Department

to begin to collect weather information which in coming years
will be useful in the design of pavement structures,

Different judgements exist on the relation between depth of
frost penetration and the depth of non-frost—susceptible mat-
eridls to use over soils such as till or silt, Erickson (15)
reports that in the western states two states use one-half of
the frost penetration for the total thickness of pavement
structure unless the soil strength calls for a greater thick—~
ness, In addition, Colorado has a table of factors which deter-
mines thickness requiremnealic ¢cpending upon the frost penetration
and moisture conditions.

Ideally the total thickness of pavement structure, including all

non-frost-susceptible materials should be at least as large as the
maximum depth of frost penetration., However, for reasons of econ-
omy it may not be practical to provide the ideal thickness partic—

ularly where soil bearing strergth does not control. Rengmark

(16) has reported on several measures used in Sweden in frost

areas to reduce detrimental frost action, These measures include:
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insertion of sand wedge: in areas of transaction from
rocks to frost susceriible soil; insertion of heat-
insulation layers unde: the sub—base(lz); use of porous

and impervious insulating layers; chemical stabilization.

(22) Rengmark (LQ) comments on the longitudinal frost cracks
developed along the center line of newly built roads
early in the frost period as the result of a greater
depth of frost penetration at the center than at the
sides, where snow provides insulation. Thorough snow
clearing at the sides or use ofa hea%~ineulcting liayer
at the center is recommended to eliminate the cracking
in cases where non-frost-susceptible material cannot be
provided over the full frost Jepth,
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